Dear reader!

Almost six years have gone by since our interdisciplinary research project got started. We have reached many goals, but in doing so we have also realized how exciting our research field is and how many fascinating new aspects are still evolving.

In this “best of” version of our German CUI News we are shining light in the truest sense of the word on molecular dynamics and the progress we have made in our research areas. It is an interplay between different partners, different scientific fields such as physics, chemistry and molecular biology, and between theory and experiment. Read what our colleague Ludwig Mathey thinks about the dialogue between theory and experiment, why Christian Bressler feels a little like Starship Enterprise, and why a dream comes true for Arwen Pearson.

Our research covers a wide field – scientifically, but also with regard to social aspects. It is very important for us to support young researchers and provide them with the best opportunities. The interdisciplinary concept of our graduate school allows them to dive deeply into their own projects while at the same time they have the chance to meet with experts directly from their field or from other projects. As it turned out, it is most fruitful to let them develop their own schools and workshops.

Speaking of schools, our school laboratory “Light & Schools” has developed an extensive program over the past years. So we are extremely happy about the new building “HALS DER LEHRE – LIGHT & SCHOOLS” for which the foundations were laid at the beginning of 2018. We want to build bridges between schools and the university, between research and teaching.

This includes the broader public. We are therefore rather proud of the success story of our exhibition “Arts & Science” which was shown for the first time in Hamburg’s City Hall and was visited by thousands of people.

In addition, for the first time in Hamburg’s City Hall and which was visited by thousands of people.

Enjoy reading!

Prof. Dr. Klaus Sengstock
Prof. Dr. Dietrich Neumann
CUI spokespersons

AREA A: CONTROL OF MATTER WITH LIGHT

LIGHT CAN DO SPECIAL THINGS

Scientists doing research in Area A use the most modern sources of light to learn more about its effect on matter. In fact, the explored objects are quite different; these might be single atoms or simple molecules, but also complicatedly structured solid state materials. Moreover, the used light is very “colorful”: the wavelengths cover the THz range (approx. 300 μm), the visible range (~ 0.5 μm) and wavelengths down to hard X-ray radiation (0.0001 μm). This is one of the reasons why research in Area A is subdivided into four focuses. The shared vision, however, is the same: Once we understand on the quantum level how matter reacts to light, we will find ways to use light for systematically controlling and steering materials which build up our world and determine its behavior.

The negatively charged electrons found in all matter react especially sensitively to the alternating electric field related to light. In Research Focus A.2, Professor Franz Kärntner (Universität Hamburg, DESY, MIT) and his colleagues have succeeded in generating THz light waves with a field strength of 200 million volts per meter (Huang 2016). For comparison: in a thundercloud, the value rarely exceeds 1 million V/m. These enormous fields have the potential to accelerate electrons to high velocities over very short distances. As was shown by the work by the group in Focus A.1 (Putnam 2017), a very good source for electrons are nanoscopic structures which are arranged on surfaces in a regular pattern. With short laser pulses, and supported by electron oscillations in the rhythm of the laser field (plasmons), the electrons are released from the surface as equally short charge pulses.

Light refraction as in a crystal

Moreover, electrons also determine the optical behavior of materials. In cooperation with Professor Christian Bressler (European XFEL) (Zalden 2016) it was observed that strong THz waves in liquids such as water, alcohols and oils induce the formation of double refraction. This means that a usually completely isotropic medium suddenly shows a differing refractive index in various directions, thus behaving like an anisotropic crystal during THz irradiation. Again – as is the case with many other of its properties – water exhibits odd characteristics and behaves anomalously compared to other liquids. In this context it is also remarkable, how nanoscopic particles – as they are produced and analyzed in CUI Research Area C – behave when they are dissolved in a liquid. A theoretical study by the team of Professor Michael Thonwar (Universität Hamburg) describes how nanoparticles behave in a liquid bath when a strong alternating electric field acts on the bath (Grabert 2016).

An international team of researchers led by Professor Franz Kärntner developed a mini-sour- ce producing short and sharply focused electron beams, which can be used to investigate all kinds of materials – from biomolecules up to superconductors: An ultraviolet flash (blue) irradiates the photocathode of the source from the rear side and releases a compact electron cloud on the inside of the device, which is immediately accelerated by an extremely intensive terahertz pulse (red) to energies approaching the kilo electron volt range.

Very distant lasers may be synchronized

With the use of X-ray beams, it is possible to experimentally investigate the dynamic behavior of molecules or particles in a liquid environment with a high spatial resolution and, with the short pulse duration of free-electron lasers (FELs), with a high time resolution as well. However, short X-ray pulses are not sufficient – they must also be synchronized stably enough with the exciting (THz) pulse. Unfortunately, it has been shown that, at most FELs, the fluctuations of synchronization are significantly larger than the pulse duration. Scientists led by Professor Franz Kärntner were recently able to demonstrate (Xin 2017) that at large X-ray FELs, it is possible to synchronize auxiliary lasers, which are separated from each other by several kilometers, with attosecond-scale precision.

A completely different approach has been proposed by Professor Robin Santra (Universität Hamburg, DESY) and Professor Tamar Steineman, who in 2015 was awarded the Mildred Dresselhaus Guest Professorship established by CUI. This theoretical work (Fung 2016), which resulted from their collaboration, deliberately accepts fluctuations and proves that, with a skilful analysis of the temporarily “blurred” data, it is possible to bring to light the hidden dynamics of the observed process. This allowed the extraction of a periodicity of 15 femtoseconds from an old data set of measurements on molecular nitrogen with a statistical time uncertainty of 300 femtoseconds that could be allocated to a vibration of the molecule. It is obvious, of course, that the observation of freely floating molecules becomes easier when these are spatially oriented. In collaboration with the first winner of the Mildred Dresselhaus Guest Professorship, Professor Rosario González-Férez, Professor Jochen Küpper (Universität Hamburg, DESY) demonstrated (Kienitz 2016) how to align OCS molecules in space with the help of mixed static and dynamic electric fields.

(Continued on page 4)

Publications

- Fläschner, N. et al., Science 352, 1091 (2016)
- Huang, W. et al., Optica 3, 11 (2016)
- Zalden, P. et al., IEEE (2016)
CONTINUED: LIGHT CAN DO SPECIAL THINGS

Barriers become permeable, transition temperature rises

Compared to molecules, the temporal evolution of states in atomic clouds is considerably slower when these are cooled down to temperatures approaching absolute zero. However, Focus A.4 reveals that the sudden ionization of parts of an ultracold quantum gas entails a distinctive dynamic development on the μs to ms time scale. The interaction of a thereby generated single ion with the remaining quantum gas could already be theoretically described to a great extent. As it was demonstrated by Professor Peter Schmelcher’s group at Universität Hamburg (Schurer 2016), the dynamic behavior of a Bose-Einstein condensate (BEC) is strongly influenced by the spin of the ion embedded within. Thus, it is possible, for example, to “switch” the permeability of quantum-mechanical tunnel barriers.

Bose-Einstein condensates have even more fascinating properties. In Focus A.4, the team of Professor Henning Moritz gives these quantum gases a two-dimensional structure and – jointly with Professor Ludwig Mathey (both Universität Hamburg) – investigates their superfluid behavior (Singh 2016). In a liquid with this property, friction disappears completely. Many other material properties, such as the quantum Hall effect, depend on its topological state. A collaboration of Professor Andreas Hemmerich (Universität Hamburg) with this year’s Miledt Dresselhaus prize winner, Professor Cristiane Moroni-Smith, postulated scenarios (Xia 2016, Di Liberto 2016) to investigate topologically driven excitations with bosonic atoms in optical lattices. One topology-defining property is the so-called “Berry curvature”. This factor, postulated for a long time but difficult to measure in real solid materials, was observed and measured for the first time in a quantum simulator (Flaschner 2016) by the team led by Professor Klaus Sengstock (Universität Hamburg). In this case, an ultracold quantum gas in a hexagonal light grid mimics the atoms in a crystal lattice.

Superconductivity is usually expected in metals or ceramic materials. Scientists in Focus A.4 already showed that, upon irradiation with strong light fields, it is possible to notably increase the transition temperature. Currently, Professor Andrea Cavalleri and his team from the Max-Planck-Institute for the Structure and Dynamics of Matter investigated a seemingly exotic material consisting of 60 fullerenes networked via potassium atoms (Mitrano 2016).

By using THz pulses, an increase of the transition temperature by more than 80 Kelvin could be verified. At the same time, Dr. Tim Laarmann (DESY) and Professor Markus Drescher (Universität Hamburg), who coordinates Research Area A, initiated another study on fullerenes (Usenko 2016). In many respects, the 60 carbon atoms of the fullerene already behave like a solid and can develop a large number of oscillation modes. It is now possible to experimentally explore and theoretically interpret the coupling of an electronic excitation at such lattice vibrations on the fs-scale. The results suggest that the energy of the large number of oscillation modes is ultimately transferred again to the electron system, namely to orbitals looking like those of a simple atom.

The illustration shows a bosonic Josephson junction controlled by a single ion. Depending on the spin state of the ion, the atoms will either tunnel through (left) or they are “self-trapped” (right).

ANALYSIS IN OUTER SPACE

Carrier rocket brings protein crystals to the ISS

On 19 February 2017 a carrier rocket was launched to the International Space Station (ISS). Samples from Professor Christian Betzel’s research group at Universität Hamburg were on board to be analyzed in the absence of gravity.

The experiment in the context of the CUI research was aimed at optimizing the growth of micro- and nanocrystals. “In the absence of gravity, there is no convection or sedimentation which means that protein crystals can grow better and are of higher quality, lacking defects, and more pure,” Betzel explains. It is exactly this process, the researchers wanted to analyze in detail.

Crystals help to determine the three-dimensional structure and function of biomolecules at atomic resolution. This is significantly important for researching the basic components of life and understanding illnesses.

The samples for the experiment on the ISS were prepared in December 2016 at NASA, USA. The researchers chemically modified certain proteins, thus contaminating the protein solutions, which were used for crystallization experiments on the ISS in accurately calculated concentration series. The scientists wanted to observe the process of contamination in space and compare it with experimental results on earth in order to understand how gravitation contributes to contaminations in crystals.

The ISS was equipped with a special microscope (LAMM, Light Microscopy Module) the data of which were live video transmitted to a protected computer system in the working group’s laboratory at the Institute for Biochemistry and Molecular Biology. Back on earth the crystals were further analyzed with synchrotron radiation at DESY and mass spectrometry. The results from this research project contribute to the targeted production of protein crystals, which are also used at the European XFEL.

The project was also supported by the German national aeronautics and space agency (Deutscher Agentur für Luft- und Raumfahrt, DLR).
How can we understand complex systems? CUI scientists combine the investigation of structure and dynamics on all time and length scales. One focus is on the analysis of biochemical processes on the molecular and atomic level in diffraction experiments with the new ultrashort X-ray beams. In the Research Area “Atomically Resolved Structural Dynamics”, coordinated by Professor Henry Chapman (DESY, UHH), small and large systems and structure-function correlations are investigated at the same time, using new methods that are developed and applied. The goal is to get a broader understanding, thus allowing to give answers to the urgent questions of biological and medical research.

The starting point includes already well understood model systems, e.g. the P(3H)412 compound studied in the group of Professor Dwayne Miller using femtosecond-detection electron pulses. In terms of its size and complexity, it corresponds to a small protein and forms a crystal with a unit cell of four nanometers. In this case, the dynamics which stabilize the charge separation were investigated. This produced spectacular films of atomic processes, as it is possible to see the dimensionality reduction during the structural transition with the naked eye. Thus, the investigation allowed the team to take a look at what is really essential in the process of a chemical reaction (Ishikawa 2015).

Following on the longstanding developments in the field of diffraction from pulsed electron sources and synchrotron radiation, the high brilliance and the extremely short pulses of free-electron lasers also offer completely new possibilities for time-resolved protein crystallography (Milner 2015). In a proof-of-principle investigation, CUI scientists demonstrated that serial femtosecond crystallography using micrometer-sized crystals provides very precise time-resolved structural images. Thus, it was possible to determine the structures of the so-called photoactive yellow protein at several points of time within the photocycle. As the very small crystals can be uniformly excited, much better results can be obtained than by means of synchrotron Laue diffraction (Tenboer 2014; Pande 2016). Although steadily improving (Oberthür 2017), a potential disadvantage of the method is the high demand for samples. This can be solved by using photo-crystallographic chips which are rasterized through the pulsed beam (Muller 2015). When using the new technology with myoglobin, the data indicate that collective coordinates on fast time scales shape the dynamics. This is in line with the collective modes model, proposed by Miller already in the time between 1988 and 1991, to understand structure-function relationships.

Structure-function relationships are generally one of the research focuses at CUI. One example is the investigation of the structure of a RNA oligonucleotide, which leads to a category of novel drugs. These show a promising efficacy in phase II clinical trials on patients with diabetic kidney disease (Oberthür 2015). Other studies investigate possibilities of where drugs can be targeted to fight malaria (Perbandt 2015) and how the immune response to Yersinia infections takes place in cells (Bemmel 2016).

Femtosecond pulses at free-electron lasers also offer a number of advantages to determine the structure itself, as the pulse stops before the sample is destroyed. This allows the exploitation of data from crystals smaller than 100 nanometers (Gati 2017). Samples can be examined at physiological temperatures and must no longer be cryogenically cooled. The methodical improvements have the potential to be used for complex protein purification. This opens up new possibilities for time-resolved protein crystallography (Müller 2015). However, the disorder in such crystals produces a diffuse background within the diffraction patterns which had not previously been fully interpreted or utilized in determining structures. In case of random deviations from the ideal lattice positions, this diffraction can be interpreted as the incoherent sum of single-molecule diffraction of individual complexes. This simple concept (see illustration 2) leads to a new paradigm in crystallography—ordered crystals are no longer the most suitable for the best analysis, preferable are imperfect crystals. This new analysis method makes possible not only higher resolutions but at the same time offers a more robust method for structure determination (Ayyer 2016).

The new possibilities offered by the ultra-bright electron and X-ray radiation sources change protein crystallography in other areas as well. Some organisms are capable of producing nanocrystals by natural means, for example yeast cells. Even using whole cells, it was possible to obtain diffraction data of excellent quality from these nanocrystals at room temperature, without the necessity for complex protein purification. This opens up promising possibilities to use cells as a kind of crystalization factory (Jakobs 2016). Moreover, new methods were developed which allow the characterization of protein nanocrystals. Already during their growth, it can be seen whether these are nanocrystals or only non-crystalline protein aggregates (Schubert 2015).

A basic prerequisite for any time-resolved measurement is that synchronous reactions must take place in all molecules of the sample. If this is not the case, the details of the process appear in a blurred way. Thus, most time-resolved measurements were so far carried out using naturally occurring photo-induced systems; however, these represent only a fraction of the systems to be submitted to dynamics investigations. Since 2015, CUI groups have been working to make additional systems amenable to a time-resolved investigation. For very fast processes, such as enzyme catalysis on a time scale, photochemical reagents are being developed which allow the triggering of biochemical reactions using very short laser pulses. For slower processes, such as the assembly of virus capsids or the transport of ligands across cell membranes, microfluidic devices are being developed. These mix reagents in a tiny reaction chamber before making them accessible via a jet system for structure elucidation (work groups of Huse, Tidow, Trebbin, Pearson).

AREA B: GREAT PROGRESS IN CRYSTALLOGRAPHY REVOLUTIONIZES STRUCTURAL ANALYSIS FROM THE LIFE OF BIOMOLECULES

Illustration of the new macromolecular crystallography concept for disordered crystals

The development of new concepts for time-resolved investigation of the structural dynamics of biomolecules includes the groups of Prof. Nik Huse (UHH), Dr. Thomas Schneider (ESRF, Hamburg), Prof. Henry Chapman (DESY, UHH), Prof. Christian Betzel (UHH) and Prof. Martin Trebbin (UHH).

Peter Neumann Institute for Computing (Pascal, Huse, Trebbin, Pearson).
NEW METHODS ALLOW DEEP INSIGHTS

The study of ultrafast ordering phenomena is of crucial importance for both, the understanding of materials and the development of “tools” for nanoscience. In Research Area C “Dynamics in Nanostructures”, coordinated by Professor Gerhard Grübel (DESY), scientists work on getting a precise understanding of the dynamics of order formation on the nanoscale. For this purpose, three research foci were identified, each using new sample environments, new measuring methods and state-of-art X-ray light sources.

Scientists at Research Area C.1, headed by Professor Gerhard Grübel, investigate the structure and dynamics of liquids and glasses in scattering experiments at modern X-ray sources. In order to discover even the smallest transient ordered states, the researchers use the highly intensive and ultra-short X-ray pulses of free-electron lasers (FELs) in the hard X-ray range, for example the Linac Coherent Light Source (LCLS) in the US, the Spring-8 Angstrom Compact free-electron Laser (SACLA) in Japan and the European XFEL in Hamburg, for the first time. At SACLA and at LCLS, CUI scientists could demonstrate that conventional XPCS experiments with several 100 sequential pulses -- with pulse intervals between 8.3 and 50 milliseconds -- are possible, regardless of natural pulse-to-pulse fluctuations at FELs (Carsin 2014, Lehmkühler 2015). By choosing established reference samples, they were able to investigate the properties of individual pulses with particular focus on XPCS applications. The results show that the European XFEL will offer the possibility to achieve faster time scales in conventional XPCS experiments to less than 1 microsecond by using the pulse intervals from 222 nanoseconds. The use of pulse split and delay optics allow additional improvement of the time resolution. In this case, X-ray pulses are split into two pulses, with one of them being delayed by up to several nanoseconds. First experiments were already carried out with prototype samples at LCLS and SACLA, and the possibility of the concept was demonstrated (Rostek 2018). In future, CUI scientists will routinely carry out ultra-fast-XPCS experiments to investigate the structure and dynamics of complex liquids. Of particular importance are, for example, the detection of transient pre-structures in the vicinity of phase transitions or the elucidation of water anomalies with XPCS and XCCA at supercooled water droplets (Steinke 2016, Perakis 2017, 2018).

In XPCS experiments at FELs, scattering signals (speckle patterns) of at least two ultra-fast, but different X-ray pulses are compared (see illustration at top). In the experiments at SACLA and at LCLS, CUI scientists could demonstrate that conventional XPCS experiments with several 100 sequential pulses -- with pulse intervals between 8.3 and 50 milliseconds -- are possible, regardless of natural pulse-to-pulse fluctuations at FELs (Carsin 2014, Lehmkühler 2015). By choosing established reference samples, they were able to investigate the properties of individual pulses with particular focus on XPCS applications. The results show that the European XFEL will offer the possibility to achieve faster time scales in conventional XPCS experiments to less than 1 microsecond by using the pulse intervals from 222 nanoseconds. The use of pulse split and delay optics allow additional improvement of the time resolution. In this case, X-ray pulses are split into two pulses, with one of them being delayed by up to several nanoseconds. First experiments were already carried out with prototype samples at LCLS and SACLA, and the possibility of the concept was demonstrated (Rostek 2018). In future, CUI scientists will routinely carry out ultra-fast-XPCS experiments to investigate the structure and dynamics of complex liquids. Of particular importance are, for example, the detection of transient pre-structures in the vicinity of phase transitions or the elucidation of water anomalies with XPCS and XCCA at supercooled water droplets (Steinke 2016, Perakis 2017, 2018).

Research Area C.2 (Professor Horst Weller and Professor Alf News, Universität Hamburg) investigates among others nucleation and growth of nanoparticles. One example is the nucleation of CdSe particles in time-resolved X-ray scattering experiments. Here, at a synchrotron radiation source, the scientists observe the growth reactions in situ at different temperatures. For this purpose, collaborations of several CUI groups created different sample environments, particularly so-called microjets, which can inject micrometer-thick liquid jets into a specific environment, and various microfluidic channel systems with the sample liquid being pumped through thin channels. Due to the constant sample flow, it is possible to measure the development of the sample over time at different positions along the channel and thereby investigate the processes of time-resolved nucleation, growth and ion coagulation (Bothe 2015, Lauth 2016). A modification of this sample environment is constituted by mixing channels, with two or more reaction partners being mixed inside the channels, to trace the following reaction over time. In the future, CUI scientists also plan to investigate the fluctuations of such processes, for example by using XPCS at FEL-radiation sources.

Coherent X-ray light from FEL and synchrotron radiation sources is also outstandingly suitable to image nanoscopic structures. With the newly developed X-ray holographic microscopy (XHAM), scientists of Area C.3 investigate magnetic nanostructures and their interaction is of great importance, as these structures are candidates for digital data storage and processing. The illustration to the right shows an example in which CUI researchers examined nanodots of 60 nanometers in size. The study of magnetization processes of nanostructured materials is a forefront topic in the modern magnetism research, particularly after the proposal was made to use pulses in the terahertz range (Bocklage 2016), which allows the quantitative study of such processes (Professor Ralf Röhlsberger, Dr. Giodo Meier).

The Optical Society of America (OSA) has elected Prof. Franz Kärtner (UHH, DESY, MIT) as a Director at Large (2016–2018). Dr. Xinmin Cheng (MPSD) has received a research fellowship for Postdocs from the Alexander von Humboldt Foundation (starting 2016). Prof. Franz Kärtner (former CUI PhD student) has been awarded a long-term fellowship for Postdocs by the International Frontier Science Program Organization (2015). Dr. Melanie Schnell (DESY, Universität Kiel) was honored with the Academic Prize of Chemistry 2015 by the Göttingen Academy of Sciences and Humanities.

New Methods allow Deep Insights

References

A year ago, an important part of the European XFEL X-ray laser became operational. The so-called injector, the 45-meter-long forward part of the superconducting particle accelerator, brought the first electrons almost up to the speed of light. This was a crucial milestone on the journey to the completion of the installation which will offer completely new research opportunities for natural scientists and industrial users. On 1 September 2017 user operation started with one beamline and two experiment stations. CUI member Professor Christian Bressler is a leading scientist at the European XFEL and has been developing tools for femtosecond X-ray experiments for the past seven years.

Prof. Bressler, what does the construction of the European XFEL mean for you and for your scientific research?

I find the scientific perspectives which we are opening up hugely exciting. It feels a little like Starship Enterprise: we will see what no one else has ever seen before. The six femtosecond X-ray experiments for the past seven years. What drives you in all this?

My immediate motivation comes from an immense curiosity which has always been part of me. In my "former life", I was rather a particle physicist and did precise measurements of energy levels and natural constants. After all, I landed in molecular physics with X-rays and structural analysis. When I look back, I think of my chemistry teacher at grammar school, who said: "If no one had ever really seen an atom. Today we do not just see the atoms but we observe their motions in real time and the measured data has become incredibly precise. That is extremely exciting and it makes me want to jump for joy. After all those years of trying to improve our measurement methods we can finally concentrate on the use of our developed X-ray methods to study things we have not been able to investigate before due to the low x-ray flux available. We only just started to operate our new scientific instrument and will soon carry out experiments which we considered impossible just a few years ago.

Your wish for the future?

We have to improve the theory. That is very important in preparation for the use of XFEL X-ray light. Currently we measure many new things and a stronger connection to theory could help us understand what is going on there. For example, I would like to tackle the area of so-called "Solvation Dynamics." If we manage to describe not just the reacting molecule but also its surrounding water molecules which are also involved in the reaction process, or possibly even to picture them in real time, it would be pioneering work. No one has managed to do that so far. Thank you very much for the conversation.
MOVING TOWARDS A SCIENTIFICALLY ACCURATE MODEL OF LIVING CELLS

The new building will house a globally leading center for inter-disciplinary research in the areas of biophysics, bio-organic chemistry and structural biology.

The HARBOR project focuses on high-resolution mass spectrometry, flash photolysis and time-resolved spectroscopy as well as a computing cluster for modelling and simulation. This will enable the scientists to develop light-based methods for the targeted triggering and control of processes in biological macromolecules in order to make these processes visible for study.

To explain: in order to generate a clear picture, the reactions in time-resolved experiments need to be triggered in such a way that all molecules to be examined react at the same time. In fast experiments, less than one millisecond, this can only be practically achieved with light. Yet by their nature, only very few biological macromolecules react to light. Pearson: “This challenge of reaction initiation has meant the majority of interesting molecular biological systems were almost impossible to study using fast time-resolved structural experiments.” HARBOR will pick up this challenge and develop the needed photochemical “tools”, as well as provide facilities to help researchers characterize their systems and determine the optimal experimental set-up to address their scientific question.

In addition to the state-of-the-art modern facilities, HARBOR will also offer room for new and visiting research groups. “With a critical mass of bright people bringing together exciting scientific questions with cutting edge methods development, particularly regarding the theory, we will really be able to make progress,” enthuses Pearson. CUI professor Gabriel Bester will be responsible for the theory section and supports Pearson as deputy project leader.

With nearly 3,000 square meters of floor space, the new building offers accommodation for around 130 people. Some 120 scientists will carry out their research in working groups focused on Spectroscopy and Imaging, Structural Molecular Biology, Synthesis Organic Chemistry and Theory. The following focal points have been defined:

- The time-resolved study of biomolecular systems requires universally deployable triggers which can initiate biophysical processes at a defined point in time. One major goal of the research is therefore the development and application of non-system specific photocages.
- The modelling of biomolecular processes with atomic resolution and high time resolution is an ongoing challenge for numeric simulations. HARBOR research groups will therefore work on the development of numeric tools, to study the molecular dynamics of biological systems in experiments and computer simulations.
- Initially the structural biology research working group will focus on two key questions in biochemistry: How membrane proteins pass on signals and molecules across the cellular membrane and how protein dynamics regulate enzyme function.

“In the end, we would like to see a scientifically accurate, dynamic model of a living cell — but that will take decades,” says Pearson. This would make the vision of the molecular movie, which CUI has pursued in physics and chemistry so far, a reality in molecular biology as well. Pearson: “Then we will be able to answer fundamental questions about life and death, but also how we can make “green” chemistry a reality.”

HARBOR will work closely with the research institutions on site as well as the national and international users of the facilities. Long before the building is handed over, which is set to happen in the middle of 2020, the fulfilment of the vision is underway. At CUI, the dynamic measurements have already started and a strong community across the campus involving research teams from UHH, EMBL, MPSD, EU-XFEL and DESY has already formed. “The strength of CUI lies in the fact that we could break down the frontiers between the disciplines. There is so much that we scientists can learn from each other and you do not need to re-invent the wheel each time,” says Pearson. In fact, the interest of other groups has been sparked and structural biology too is increasingly visible at Universität Hamburg. Pearson: “It is already working.”
THE DYNAMICS RAISES A NEW CLASS OF QUESTIONS

The fundamental science at the excellence cluster CUI is an interplay on the most divergent levels. Here, colleagues from a wide range of national and international institutions cooperate; they research at the intersections of physics, chemistry, biology and medicine – with large scientific instruments, in laboratories and at computer. We spoke to Professor Ludwig Mathey from the Center for Optical Quantum Technologies at Universität Hamburg about one of the pillars of this system: the connection between theory and experiment in physics.

Professor Mathey, what is the task of theoretical physics? Theoretical physics can be divided into two parts: on the one hand, it is about understanding an existing experiment that is the explanation of what has been observed. On the other, theoreticians generate suggestions for those in charge of the experiment as to what else could be measured – and in this way they prepare entirely new research directions.

What role does mathematics play in this? Mathematics is the tool kit. In the end, theory is a mathematical description. But while “real” mathematics is motivated by reality and leads to an abstract construct, physics is always a dialogue between the theory and the experiment.

What does this dialogue between the theory and the experiment look like? The theory works with approximations and different methods, but always with feedback from the experiment. This is a very fruitful interaction. Because the other way around, the experimenters come to us with a measurement curve and ask how this may have happened. Then we gain a fresh impetus to think in a new direction, to develop new ideas. High-temperature superconductivity is a good example for this interaction. In the '90s, the models for existing materials had been calculated and the theoretical physicists have tried to discover the new. But even open questions remained. That stagnation came to an end, though, when Andrea Cavalleri experimented with new materials at the Max Planck Institute and gained new insights into these materials (see box for example). This has led to a tremendous breakthrough. That is why the interplay between theory and experiment is extremely important and in the end the core of physical research.

Where are the boundaries of theoretical physics? Physics is fundamentally limitless, but is – as demonstrated by the Nobel Laureate in Physics Bill Phillips – limited in practice: through resources, through creativity or through materials. I am sometimes amazed, when it is said on television, for example, that we can understand everything. Even independently of experiments there are many open questions and a list of challenges. The core subject of CUI, for example, the study of the dynamics of atoms, molecules and solid state matter, raises a new class of questions. While light is being used in many parts of existing physics to measure a phenomenon that is occurring by itself, we now ask the question how superconductors, for example, can be influenced with the aid of light. So it is about the dynamical control of solid matter or atoms or chemical reactions through light. A lot of things are still unresolved here.

When is theory successful? Generally we speak of a success when we understand a phenomenon. A theory has succeeded when an experiment is accurately predicted or accurately interpreted and fits into the complete physical framework. But sometimes calculations go wrong because the model or the approximation is flawed. I have often thought that one should start a journal of unsuccessful projects, because those projects can often lead to something that is right. It is an interesting phenomenon, when one understands why something did not work out. An almost ideal example is a research result from Henry Chapman’s group, which has been working on the blurring caused when working with “disordered” crystals (see box). The exploration of a mistake or assumed mistakes leads to new insights.

Why are you doing all this? What is the societal mission? Good fundamental science has a high social value in my eyes. It leads to applied science, to new technologies, to finally has an intellectual value when one understands a very good example of this. Its invention was regarded as a gimmick, a curiosity. Today, it is found everywhere: in cars, in medical technology, in almost all areas of everyday life and it is one of the most important technologies of the 20th century. But without fundamental physical science the laser would never have been invented.

The other societal mission is the training of young people. I always see a pronounced maturing process among our postgraduates. We pass on to them how you work at the interface, how to think analytically, how to set priorities and manage one’s time. Those are all skills which are needed in science, but which can easily be transferred to other economic or industrial projects.

Thank you very much for the conversation.

The many phenomena of magnetism are of the greatest interest to fundamental and applied scientists. In a joint study, the groups of Mathey and Henning (Universität Hamburg) examined the formation of magnetic order in cold atoms. Red and blue triangles in this computer simulation represent different magnetic states which build domains of different size and form.

FOR LUDWIG MATHEY THERE ARE NOT MANY PLACES WHICH WOULD BE A BETTER THEMATIC MATCH

Ludwig Mathey has been Professor for Theoretical Physics at the Universität Hamburg since 2011 and leads the group Ultracold Atoms and Solid State Systems. As of 1 April 2017 he has accepted the call for a CUI theory professorship (W2). The chat with him about his career begins with a misunderstanding. How did he, a Professor of Physics, come to be a Doctor of Philosophy? Philosophy would interest him, yes, but the ‘Doctor of Philosophy (Ph.D.)’ Physics is simply the American label of his doctor title in physics, says the scientist.

Mathey completed his doctorate between 2002 and 2007 at Harvard University in Cambridge, USA. He worked in a decentralized fashion, with different colleagues and not one single supervisor – rather unusual situation compared to Germany. It meant that he had to kick off every project himself and was forced early on to become independent. “In the end I was very glad about the chance to mature during this process.” Harvard, he says, is part of the global science centers and the exciting time there has changed him. “You realize, if I do not show some initiative, it will not work out,” stresses the physicist.

In 2007, as a postdoc, Mathey went to the Joint Quantum Institute, which is run by the University of Maryland and the National Institute for Standards and Technology (NIST). 3,000 people work there on topics ranging from industrial use to fundamental scientific research. Mathey had already specialized on cold atoms and benefited from his very active environment – he worked, for example, with the Nobel Laureate in Physics Bill Phillips.

After three-and-a-half years as a postdoc, Mathey applied in the USA and in Europe: “The offer in Hamburg was the most attractive at the time. In 2011 three experimental groups for cold atoms, that is unusual. That was a near perfect match for me, because I was very much looking forward to the collaboration with them.” In addition, there were the many other colleagues with whom joint activities have developed over time. And one felt, for example, Professor Klaus von Klitzing, that there was something with the Center for Optical Quantum Technologies. “That made an impression with me and the colleagues in atomic physics.” As they knew Professor Henning Moritz, one of the experiment leaders, from Heidelberg. For the scientist, who had grown up in Hamburg, it worked out well.
A little more than 6 years ago, CUI’s Graduate School accepted the first doctoral candidates. In an interview with CUI News Professor Peter Schmelcher, director of the Graduate School, describes the development of the school and sketches out ideas for the future.

One of the main tasks of our graduate school is to provide an excellent educational program to enable PhD students to perform excellent research in their individual research groups. Apart from the course program with its various modules this is supported also by strong, meanwhile very well established, guest program and many opportunities for the students to travel to meetings, workshops and conferences. Building up a scientific network is an important step in today’s research world for an academic (or non-academic) career. This serves not only the purpose of being updated with the most recent developments and to acquire the most recent technology in your specialized research field, but also to meet the leading experts personally knowing them and becoming known by them due to one’s research expertise. In today’s research the number of publications appearing daily is enormous and hard to follow, which is why this ‘channel’ of dissemination of research results has become increasingly important over the past years. Our graduate days represent an excellent platform in this respect since the courses offer the opportunity to ask individual questions and to personally discuss with the lecturers, who are leading experts in their fields.

What is the difference between the CUI Graduate School and other graduate schools? From the very beginning it was clear that one of the challenges of CUI and in particular of the CUI graduate school will be to find a common language: CUI covers research wise the full span from physics and chemistry to structural biology and many medical applications. As such it is truly interdisciplinary and, in view of the specialization in individual research groups, it is by no means easy to find a common platform and ground for discussions and interactions.

What worked out especially well in this context over the past five years?

We have been trying hard to push on this frontier and, this is my impression, we have indeed been successful to some extent. Unexpectedly, but at a second glance very naturally, measures such as the winter school of the early career researchers have been instrumental in putting this forward. The winter school is organized by the PhD students themselves, which means that they can decide what is necessary and adequate to learn and progress along the above lines. They decided to go to a mix of presentations on their own research results combined with young invited speakers that cover specific research lines and indeed bridge between the fields of research of CUI. This way the winter school has emerged as a crucial way of binding together the CUI graduates and learning about each other’s expertise.

How could CUI’s Graduate School develop in the future?

In the future, in particular to further promote the knowledge of each other’s research fields resulting in cross disciplinary projects, one could think of several innovative measures. One of them are the so-called idea factories where young researchers come together e.g. in an intense science hackathon at the interface between rigorous academic research and free interdisciplinary exploration. This could serve the purpose to specifically develop and address questions between the specialized fields and to fully exploit any kind of synergies.

What kind of advice for their future would give the graduates?

My personal advice number one has been always to follow your own interests and to take yourself seriously in what you are interested in. It is only this way that you will develop your full potential and will take the deepest satisfaction from what you are doing and what you will accomplish. Sometimes this goes smoothly, other times it brings you to face with the troubles of life that can become a seed for growth.

Thank you very much for sharing these insights.

BUILDING BRIDGES BETWEEN RESEARCH FIELDS

Workshop by and with young scientists – important feedback on one’s own scientific work

In June 2016, CUI’s graduate school invited participants to a Young Researchers Workshop for the first time. Following Professor Peter Schmelcher’s initiative, the workshop’s goal was to establish contacts with other PhDs and postdocs from renowned groups and to provide opportunities to discuss and exchange selected topics from CUI’s research area A.

Under the title “From few- to many-body physics in cold atomic quantum matter”, the young scientists discussed the behavior of quantum systems at the transition from few to many particles. Each speaker talked for 40 minutes and afterwards the presented results were discussed for 20 minutes. On the one hand, this concept allowed speakers to provide sufficient details from their work, on the other hand, there was enough time for the participants to discuss the topics, so that they could connect the respective working groups and their particular methods.

“We did not have any experience with this kind of concept and are very happy that the liberally planned discussions were well accepted,” says Johannes Schurer, who organized the workshop together with Bernhard Ruff, Simos Mistakidis and Christian Fey. “The students received important feedback on their own scientific work. In the meantime, the workshop helped to build bridges between the research fields.”

Winter school on the Island of Ruegen. The school is organized by the PhD students themselves and gives them a good opportunity to present their projects.

Sabrina Zinn: At the end of 2012 Melanie Schindl offered me a move to CUI. You would not say no to such a great opportunity! The most valuable experience during my time at CUI was to get in contact with other PhD candidates and research fields and to exchange ideas. In addition, I could participate in a broad travel program and meet with outstanding scientists who are interested in my work in particular. That was really nice. And I really enjoyed participating in the graduate days and the summer and winter schools.

Robin Schubert: When you graduate at CUI, you do not disappear in your lab for three years. Instead, there is a lively exchange with other research groups. You can discuss your ideas with others and then develop them further. I also enjoyed taking part in the winter schools and in the graduate days. On a couple of occasions, I made research trips to laboratories in collaboration with other scientists. Mutual research projects developed from these discussions. Conferences and workshops which were financed by CUI have also stimulated my research.

Doing your PhD at CUI: lively exchanges, new projects

As of March 2017, 84 PhD candidates were doing research within the cluster of excellence, among them 22 female scientists. Dr. Sabrina Zinn and Dr. Robin Schubert were among the first to complete their PhD at CUI in the year 2016. We asked the two scientists, who worked for the Max Planck Institute for the Structure and Dynamics of Matter and the Institute for Biochemistry and Molecular Biology at Universität Hamburg, about their experiences.
FOCUSING ON RESEARCHERS IN NEED

PETER SCHMELCHER SUPPORTS THE COMMITTEE ON INTERNATIONAL FREEDOM OF SCIENTISTS (CIFS)

The freedom of research is not always given as it is in Germany. When scientists are hindered in the pursuit of their scientific interest, this is a case for the Committee on International Freedom of Scientists (CIFS) of the American Physical Society. Professor Peter Schmelcher, Director of the CUI Graduate School, was a member of the globally active committee from January 2014 until December 2016. The committee is responsible for monitoring concerns regarding human rights for scientists throughout the world, especially concerning the freedom of research activity. Key aspects of its mission are the representation of the interests of the person concerned towards authorized institutions and political decision-makers as well as generating highly visible publicity on the cause and the individual situation.

Reliable information

“The cases that the Committee is engaged with can be rather complicated and an important first step is to achieve reliable and complete information,” Schmelcher explains. Nine members of the committee meet twice a year in Washington to discuss the cases and to define a strategy. It can be emotionally stressful, admits Schmelcher, and describes the situation of the Iranian physicist Omid Kokabee as a typical case:

Kokabee conducted research at the Institute of Photon Science in Barcelona from 2007 to 2011 and then at the University of Texas at Austin. During a visit to Iran, he refused to work for military research there. He was then prevented from leaving the country and sent to ten years in prison by the revolutionary court on charges of “communicating with a hostile government (USA)” and “illegitimate/illegal earnings”. A number of institutions started a public campaign to draw attention to the researcher’s fate. They wrote petitions and articles were published in the New York Times. Furthermore, Kokabee was awarded the Andrei-Sakharov-Prize of the American Physical Society. An initiative involving top-level political decision-makers in the USA achieved Kokabee’s transfer to a hospital; he was released on parole in 2016 after having served more than five years in prison.

Hard conditions in prison

“Despite very hard conditions in prison, Kokabee refused to give in to the Iranian demands and fought heroically,” Schmelcher emphasizes. Schmelcher, who is the leader of the Theory Group of Fundamental Processes in Quantum Physics at the Centre for Optical Quantum Technologies of Universität Hamburg, has thought thoroughly about his engagement. He was pleased when the committee’s chairman, who had heard him take a strong stand during a discussion in Harvard, contacted him. “Of course I want to help in difficult situations. The question is, whether you are the right person,” Schmelcher says. The members are elected for three years.

For almost 30 years, the CIFS has supported scientists in need. The Committee investigates human rights abuses, gathers information, supports the persons affected, and informs colleagues and the public. “The freedom to research and teach as we know it from Germany is suppressed in other countries,” Schmelcher says. The committee is not politically active but stands up for individual cases. “We take the initiative when researchers lose their position or are threatened by imprisonment. Very often the individual situation is an indicator for the general situation in the respective countries,” he explains. In some cases the situation can be changed, but this is not predictable. Somebody who is involved in this way has to have a very open motivation. But Schmelcher says: “The persons affected are very thankful.”

SCHOOL LABORATORY OFFERS EDUCATION PROGRAM FOR FUTURE TEACHERS

INSPIRING PUPILS AND BOOSTING TEACHERS’ SKILLS

Advanced training enables students to dive deeply into experimental work and look into current research.

Prof. Erika Garutti from the Institute of Experimental Physics at Universität Hamburg, who coordinates the so-called F-Praktikum and Professor Klaus Sengstock, who is the director of “Light & Schools”, initiated a new offer to bring both areas closer together.

The school laboratory, which is financed by CUI, aims to build a bridge between school and research. By offering newly developed and exciting experiments, coordinators Bastian Besner and Dr. Monika Kobylinski hope to spark an interest in physics among young people. Pupils can develop their own app, create Liquid Crystal Displays, work with GPS systems and build their own speakers. The projects are often connected to everyday objects like mobile phones, loud speakers or 3D cinema, and they usually try to appeal to aesthetic aspects. In their last years at school the boys and girls have the opportunity to learn about lasers and coherent light, they can visit scientific talks and join lab tours. In this way, “Light & Schools” wants to open new doors to the natural sciences.

The F-Praktikum offers a broad range of experiments, which give strong insights into modern experimental physics. “This is perfect for future scientists. Future teachers, however, have told us that it can be a problem for them to enter so deeply into the science,” says Dörte Schirok, who was a coordinator at “Light & Schools” until July 2018. Now Bastian Besner and Milan Zvolký have developed a program especially concerned to the needs of future teachers. Within the advanced internship at “Light & Schools”, students can select an experiment about lasers and coherent light from the past years and become acquainted with the theory, develop a didactic concept and then carry out the experiment with a small group of six pupils. Here the motto is learning by teaching, says Garutti.

At the beginning of 2019, “Light & Schools” and the F-Praktikum-Team will move even closer together in a new common building. The foundations for the „HAUS DER LEHRE – LIGHT & SCHOOLS“ were laid at the beginning of 2018. It is a one-storey, multifunctional and transparent building where pupils and students can profit from each other’s knowledge and learning. With 1,070 square meters, the building designed by Hammeskreuz Architekten offers space for labs and seminar rooms. Even recreational areas will be equipped with physics experiments. “You can have fun with physics during breaks,” Garutti says. “We want to build bridges between schools and the University, between research and teaching.”

BRIGHT & VISIONARY / CUI News / English Issue, Summer 2018

18
Five years ago, CUI launched an ambitious action plan to make a mark – for men and women. A family-friendly university is everybody’s concern, as Prof. Heinrich Graener, Dean of the Faculty of Mathematics, Informatics and Natural Sciences at Universität Hamburg, then stated. The action plan has two principal aims, first, to create better opportunities to balance a scientific career and family life and second, to support female scientists at all levels of a scientific career. “Whether we will achieve our aim of increasing the share of women in natural sciences will only become evident within a few years. A lot will have to change in the heads of decision-makers,” Professor Melanie Schennl said, who represented equal opportunities in the CUI board from 2013 until 2017. “But what we can see is that our programs have been established and more and more women scientists are put forward for our awards and fellowships.”

The Mildred Dresselhaus Guest Professorship Program comes with prize money and a teaching and research visit at CUI and is awarded to one senior and one junior exceptional woman scientist every year. “This works in two directions,” Marie Lutz, who is the Equal Opportunity Officer at CUI, explains. “The senior scientists bring along their prestige and know-how which we profit from here in Hamburg. The junior scientists then again seem to reap enormous personal benefits and get a real kick for their career.”

The organizing team of the “Mildred Dresselhaus Guest Professorship Program” at CUI has even been honored with the Equal Opportunity Prize 2018 of Universität Hamburg in recognition of its particular commitment to empowering (young) female scientists in physics and the positive effects on the whole science community. The prize is worth € 10,000.

The Louise Johnson Fellowship kicks in at an earlier stage in the scientist’s career: it offers a two-year position to a female postdoc. “More and more CUI scientists – men and women – take this chance to reward and encourage a good junior scientist with an attractive position,” Lutz explains. Above all, it creates as well as external applicants profit from this.

Furthermore, CUI and a number of partners invite women to the twice-yearly Women’s Career Day. “Seeking advice is a sign of strength,” emphasizes Professor Dwayne Miller, director at the Max Planck Institute for the Structure and Dynamics of Matter and spokesperson of CUI, said at a kick-off event of the mentoring program. “One needs a good guide to get you through,” he added. “dynaMENT – Mentoring for Women in Natural Sciences” wants to provide precisely this career compass to female PhDs and postdocs who are planning to work in academia.

The program started in 2015, as the first campus-wide mentoring program for women in the natural sciences in Hamburg-Bahrenfeld. In 2017 it received its name, “dynaMENT Mentoring for Women in Natural Sciences”. Most of the participants highly appreciate the consultations with their mentors. “It is a great opportunity to be a mentee, because I can profit from the experiences a successful female scientist has made. Thanks to my mentor’s support I get deep insights into the scientific landscape. It is of high value for me to discuss the feasibility of my career goals and my scientific plans with my mentor,” says Dr. Antonia Karamatskou, a CUI fellow and mentee of the first round in 2015/2016, who was coached by Mildred Dresselhaus Guest Awardee Professor Anouk Rijs. “Seeking advice is a sign of strength,” emphasizes Professor Daniela Piwnicku, executive director of the Institute of Theoretical Physics at Universität Hamburg.

The candidates have to participate in a comprehensive application process to be accepted in the program. But, as Miller says: “When you leave this program, you can do it – no matter what comes.” dynaMENT offers confidential one-to-one sessions with experienced female mentors from various scientific fields, networking events and workshops in English. Shortly after the kick-off, the first workshop for mentees is usually moderated by Anika Osternмаier-Grabow. “It is mostly a very lively afternoon. They are all there and very curious about the stories the others have to tell and eager to exchange ideas,” the project manager and program organizer says. This session is followed by several further workshops with external trainers which are then supplemented by networking events on topics that are tailored to the workshops. These include strategic networking, conflict management, diversity & intercultural challenges, job interview /self-presentation, self-marketing & scientific communication an leadership skills. The series ends with a reflection process.

The mentors are excellent researchers at advanced career levels: professors, group leaders, senior scientists, scientific coordinators. In parallel to the program for the mentees, they are trained by an external coach as well. “We hope that mentors and mentees meet up as much as is possible and necessary in addition to the events,” Osternмаier-Grabow says. Mentor and CUI Professor Arwen Pearson (Universität Hamburg) builds upon her own experiences: “I was lucky to have, and still have, great mentoring. So this is my way to pay things forward – and it is very rewarding to see someone grow.”

The kick-off event was also a thank you to the mentors and celebration of the mentees of the 2017/2018 round, who are holding their certificates.
22 CUI News / English Issue, Summer 2018 | BRIGHT & VISIONARY

THE SOUND OF CRYSTALLOGRAPHY
EXPERIENCE SCIENCE WITH ALL YOUR SENSES

Is it possible to hear crystallography? The members of the arts group „The Superposition collective“, Lawrence Molloy and Dominé Hopkinson, gave it a try together with scientists Professor Ben Whitaker and Dr. Mike Nix of Leeds University. The result is a sound installation that appeals to all our senses. For the Night of Knowledge 2017, CUI and the Center for Free-Electron Laser Science arranged for the exhibit called Unit Cell to be reconstructed and put in front of the CFEL building as an eye catcher.

“One hundred years ago the physicists William Lawrence Bragg and William Henry Bragg first worked out how to investigate the structure of crystals with X-rays,” Professor Arwen Pearson of Universität Hamburg explains. She brought the exhibit to Hamburg to show it during the Night of Knowledge. Inspired by the physicist’s understanding of the world, but they do have an influence on each other. The overlap is the astonishment, the desire to understand things and learn new ones, sparked by something beautiful, special or unknown. The astonishment leads us to ask further questions and explore more deeply. Visualizations fill abstract physical principles with life and make the research accessible to a wide audience.

Science expands our senses, it lets us see microscopic worlds and solar systems, understand historical events and recognize parts of the future. It forms our understanding of ourselves and the world which surrounds us, it influences our actions, our dreams and our striving – and therefore our art and design.

By Prof. Peter Schmelcher and Prof. Julia Lehmann for the exhibition poster “Arts & Science”

Above: You can hear and see it from far away: In the sound sculpture “Unit Cell” sound waves hit the balls

Left: Fascination for physics: Prof. Gunter Huber (Institute of Laser Physics) tirelessly explained the laser exhibits

EVENTS

FRESH KNOWLEDGE FROM THE TAP

„Can nanoparticles cure?” That was the question Professor Horst Weller (Universität Hamburg) asked the audience in a bar in Hamburg’s St. Stephans district. „What do we need them for and will they maybe help to defeat diseases?” With that, he sparked off a lively discussion, just like Professor Franz X. Kärtner. The fourth edition of “Wissen vom Fass” (Science on tap) again gave the public fresh insights into science and the lives of scientists.

This year’s talks ranged from STEM, the humanities and social sciences through to legal sciences. Forty-five scientists spared no effort to explain their highly complex research – sometimes in small groups with six people, sometimes with 100 guests, sometimes as an exquisite discussion round, in other cases as a scientific happening.

„Wissen vom Fass” is jointly organized by DESY, CUI, the collaborative research center Particles, Strings and the Early Universe (SFB 676), the Department of Physics at Universität Hamburg, and PIER, the strategic partnership between DESY and Universität Hamburg.

„How do you shrink an accelerator?” Prof. Franz X. Kärtner (Universität Hamburg, DESY, MIT) asked his audience

„Wissen vom Fass”

THE BEAUTY OF SCIENCE
GREAT SUCCESS FOR “ARTS & SCIENCE” IN HAMBURG’S CITY HALL

E veryday life as a researcher is characterized by pioneering spirit and scientific focus. „Only rarely does one change one’s point of view. If you do, there is an incredible diversity,” Prof. Peter Schmelcher (Universität Hamburg) said opening the exhibition “Arts & Science” first shown in the summer of 2017 in the foyer of Hamburg’s City Hall. The exhibition originated in a contest among members of CUI. What makes it so special is that it is not the scientific impact that counts, but – instead – the aesthetics. This approach was quite right for the two-week exhibition: thousands of people visited City Hall, surveyed the vibrant pictures, let themselves be attracted by the colors and – by reading the accompanying texts and looking at the lab photos - gained new insights into basic research in the natural sciences. Due to the great resonance the pictures were even shown a second time in City Hall.

„Thank you very much for the great research results, thank you very much for the public event,” Dr. Rolf Greve, Director-General at the Hamburg Ministry of Science, Research and Equalities, said at the opening. „We should try to do more in this direction, because we need such events to show the public how beautiful science can be.”

Prof. Dr. Dieter Lenzen, President of Universität Hamburg, stressed: „It is good that you show that a discipline like physics, which appears quite sober at first glance, can look as does.” He was curious to hear about the impact for artists.

„Art can make science understandable, while at the same time science enables art to work,” Prof. Julia Lehmann, who was involved in selecting the pictures for the exhibition, explained. Her professional focus is on connecting science and artistic creativity. The fruitful collaboration was a great success for CUI.

Some visitors appreciated mostly the colors, others delved more deeply into the science behind the images

Pas de Deux: On the interplay between art and natural science

Even though the methods of examination and the language differ, art and natural science cannot be separated from each other. On the contrary: as in a dance they develop a relationship and influence each other.

The progress in the natural sciences, especially in physics and chemistry, is driven by the quest for knowledge and understanding as well as the search for the fundamental principles which are responsible for nature’s complexity.

In addition to the scientific quest for insights, the natural sciences offer an impressive beauty which shows up in many visualizations and offers a fascinating aesthetic view of science.

Arts and science may offer two different paths towards the understanding of our world, but they do have an influence on each other. The overlap is the astonishment, the desire to understand things and learn new ones, sparked by something beautiful, special or unknown. The astonishment leads us to ask further questions and explore more deeply. Visualizations fill abstract physical principles with life and make the research accessible to a wide audience.

„Wissen vom Fass” is jointy organized by DESY, CUI, the collaborative research center Particles, Strings and the Early Universe (SFB 676), the Department of Physics at Universität Hamburg, and PIER, the strategic partnership between DESY and Universität Hamburg.
Prizes and awards IV.

Dr. Denise Erb (former CUI) has been awarded a Prize by the Association of the Friends and Sponsors of DESY for her outstanding PhD thesis (2015).

Prof. Gabriel Bester (UHH) has been honored by the High Performance Computing Center Stuttgart (HLRS) with the traditional Golden Spike Award 2015.

Hamburg Prize for Theoretical Physics 2013-2017

From 2013 - 2017 CUI and the Joachim Herz Stiftung have jointly awarded the “Hamburg Prize for Theoretical Physics” to five outstanding physicists. The prestigious prize worth € 40,000 honored outstanding contributions of a highly accomplished international researcher in the field of Photon Science, especially Quantum Optics, Laser Physics, Ultrafast Physics, and X-ray Physics:

2017 - Prof. Dr. Andrew Millis, Columbia University, Simons Foundation, New York, USA

2016 - Prof. Dr. Mikhail Katsnelson, Radboud-University, Nijmegen, Netherlands

2015 - Prof. Dr. Ignacio Cirac, Max Planck Institute of Quantum Optics, Garching, Germany

2014 - Prof. Dr. Antoine Georges, Collège de France, École Polytechnique, Paris, France, and University of Geneva, Switzerland

2013 - Prof. Dr. Chris H. Greene, Purdue University, West Lafayette, USA

From 2018 on the prize will be awarded by CUI and the Joachim Herz Stiftung together with the Wolfgang Pauli Centre (WPC) of Universität Hamburg and DESY as a new partner. It involves now all areas of theoretical physics and is endowed with a prize money of € 100,000.

OUR COVER

Superfluidity is an amazing dynamic phenomenon of the quantum world: an object which is dragged through a normal fluid experiences friction. However, when it is dragged through a Bose-Einstein condensate there is no friction.

The illustration shows the setup for a quantum simulator to image the electronic structure of molecules. Scientists from the group of Professor Klaus Sengstock (Universität Hamburg) simulated a benzene molecule, in which a laser field (bottom) takes the role of the atomic nuclei. This laser field results from overlaying a strong laser beam (red) with an optical lattice. Ultra-cold atoms mimic the electrons in a molecule and allow to imaging an artificial molecular orbital – which makes the distribution of electrons visible (center). DOI: 10.1103/PhysRevX.5.031016

A team of scientists led by Prof. Henning Tidow (Universität Hamburg) determined the structure of a thiamine transport protein – an important milestone in membrane transport research and for drug discovery in the long run as vitamin transporters are responsible for the uptake of essential nutrients in bacteria. The team made use of lipidic-cubic phase X-ray crystallography complemented by coarse-grained molecular dynamics simulations and fluorescence spectroscopy to determine the illustrated structure of YkoE with bound thiamine. DOI:10.1016/j.chembiol.2016.06.008

The photo shows a sample right before it is locked into a scanning tunneling microscope operated by the group of Professor Sebastian Loth (MPSD, Universität Stuttgart) at the Center for Free-Electron Laser Science. The scanning tunneling microscope images materials with extreme magnification and resolves individual atoms on the material’s surface. Unlike conventional light microscopes, an atomically sharp needle probes the surface mechanically and generates the image step by step. The photo was taken for the Arts & Science exhibition. www.cui.uni-hamburg.de/en/events/arts-and-science/

Our partners:

Imprint
Publisher: The Hamburg Centre for Ultrafast Imaging (CUI), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Tel.: 040 8998-6696 www.cui.uni-hamburg.de
Edited by: CUI Public Outreach, Ingeborg Adler, responsible in the sense of the German „Pressegesetz“